Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554901

RESUMO

Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.


Assuntos
Antifúngicos , Proteínas Fúngicas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Penicillium , Penicillium/genética , Penicillium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Transcriptoma , Mutação , Virulência/genética , Filogenia
2.
Plant Biotechnol J ; 22(1): 37-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882352

RESUMO

Plant Synthetic Biology aims to enhance the capacities of plants by designing and integrating synthetic gene circuits (SGCs). Quantitative reporting solutions that can produce quick, rich datasets affordably are necessary for SGC optimization. In this paper, we present a new, low-cost, and high-throughput reporter system for the quantitative measurement of gene expression in plants based on autonomous bioluminescence. This method eliminates the need for an exogenous supply of luciferase substrate by exploiting the entire Neonothopanus nambi fungal bioluminescence cyclic pathway to build a self-sustained reporter. The HispS gene, the pathway's limiting step, was set up as the reporter's transcriptional entry point as part of the new system's design, which significantly improved the output's dynamic range and brought it on par with that of the gold standard FLuc/RLuc reporter. Additionally, transient ratiometric measurements in N. benthamiana were made possible by the addition of an enhanced GFP as a normalizer. The performance of new NeoLuc/eGFP system was extensively validated with SGCs previously described, including phytohormone and optogenetic sensors. Furthermore, we employed NeoLuc/eGFP in the optimization of challenging SGCs, including new configurations for an agrochemical (copper) switch, a new blue optogenetic sensor, and a dual copper/red-light switch for tight regulation of metabolic pathways.


Assuntos
Cobre , Biologia Sintética , Genes Reporter
3.
Front Vet Sci ; 10: 1223825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146499

RESUMO

Introduction: Articular cartilage injuries are a severe problem, and the treatments for these injuries are complex. The present study investigates a treatment for full-thickness cartilage defects called Autologous Chondral Platelet Rich Plasma Matrix Implantation (PACI) in a sheep model. Methods: Chondral defects 8 mm in diameter were surgically induced in the medial femoral condyles of both stifles in eight healthy sheep. Right stifles were treated with PACI and an intraarticular injection with a plasma rich in growth factors (PRGF) solution [treatment group (TRT)], while an intraarticular injection of Ringer's lactate solution was administered in left stifles [Control group (CT)]. The limbs' function was objectively assessed with a force platform to obtain the symmetry index, comparing both groups. After 9 and 18 months, the lesions were macroscopically evaluated using the International Cartilage Repair Society and Goebel scales. Results: Regarding the symmetry index, the TRT group obtained results similar to those of healthy limbs at 9 and 18 months after treatment. Regarding the macroscopic assessment, the values obtained by the TRT group were very close to those of normal cartilage and superior to those obtained by the CT group at 9 months. Conclusion: This new bioregenerative treatment modality can regenerate hyaline articular cartilage. High functional outcomes have been reported, together with a good quality repair tissue in sheep. Therefore, PACI treatment might be a good therapeutic option for full-thickness chondral lesions.

4.
Front Bioeng Biotechnol ; 11: 1222812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609115

RESUMO

Fungal synthetic biology is a rapidly expanding field that aims to optimize the biotechnological exploitation of fungi through the generation of standard, ready-to-use genetic elements, and universal syntax and rules for contributory use by the fungal research community. Recently, an increasing number of synthetic biology toolkits have been developed and applied to filamentous fungi, which highlights the relevance of these organisms in the biotechnology field. The FungalBraid (FB) modular cloning platform enables interchangeability of DNA parts with the GoldenBraid (GB) platform, which is designed for plants, and other systems that are compatible with the standard Golden Gate cloning and syntax, and uses binary pCAMBIA-derived vectors to allow Agrobacterium tumefaciens-mediated transformation of a wide range of fungal species. In this study, we have expanded the original FB catalog by adding 27 new DNA parts that were functionally validated in vivo. Among these are the resistance selection markers for the antibiotics phleomycin and terbinafine, as well as the uridine-auxotrophic marker pyr4. We also used a normalized luciferase reporter system to validate several promoters, such as PpkiA, P7760, Pef1α, and PafpB constitutive promoters, and PglaA, PamyB, and PxlnA inducible promoters. Additionally, the recently developed dCas9-regulated GB_SynP synthetic promoter collection for orthogonal CRISPR activation (CRISPRa) in plants has been adapted in fungi through the FB system. In general, the expansion of the FB catalog is of great interest to the scientific community since it increases the number of possible modular and interchangeable DNA assemblies, exponentially increasing the possibilities of studying, developing, and exploiting filamentous fungi.

5.
Plant Biotechnol J ; 21(7): 1440-1453, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37032497

RESUMO

Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.


Assuntos
Nicotiana , Atrativos Sexuais , Animais , Nicotiana/genética , Nicotiana/metabolismo , Atrativos Sexuais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Insetos
7.
Front Plant Sci ; 13: 941338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388501

RESUMO

Plant biofactories are a promising platform for sustainable production of high-value compounds, among which are insect sex pheromones, a green alternative to conventional insecticides in agriculture. Recently, we have constructed transgenic Nicotiana benthamiana plants ("Sexy Plants", SxP) that successfully produce a blend of moth (Lepidoptera) sex pheromone compounds (Z)-11-hexadecen-1-ol and (Z)-11-hexadecenyl acetate. However, efficient biosynthesis of sex pheromones resulted in growth and developmental penalty, diminishing the potential for commercial use of SxP in biomanufacturing. To gain insight into the underlying molecular responses, we analysed the whole-genome transcriptome and evaluated it in relation to growth and pheromone production in low- and high-producing transgenic plants of v1.0 and v1.2 SxP lines. In our study, high-producing SxPv1.2 plants accumulated the highest amounts of pheromones but still maintained better growth compared to v1.0 high producers. For an in-depth biological interpretation of the transcriptomic data, we have prepared a comprehensive functional N. benthamiana genome annotation as well as gene translations to Arabidopsis thaliana, enabling functional information transfer by using Arabidopsis knowledge networks. Differential gene expression analysis, contrasting pheromone producers to wild-type plants, revealed that while only a few genes were differentially regulated in low-producing plants, high-producing plants exhibited vast transcriptional reprogramming. They showed signs of stress-like response, manifested as downregulation of photosynthesis-related genes and significant differences in expression of hormonal signalling and secondary metabolism-related genes, the latter presumably leading to previously reported volatilome changes. Further network analyses confirmed stress-like response with activation of jasmonic acid and downregulation of gibberellic acid signalling, illuminating the possibility that the observed growth penalty was not solely a consequence of a higher metabolic burden imposed upon constitutive expression of a heterologous biosynthetic pathway, but rather the result of signalling pathway perturbation. Our work presents an example of comprehensive transcriptomic analyses of disadvantageous stress signalling in N. benthamiana biofactory that could be applied to other bioproduction systems.

8.
Urol Pract ; 9(3): 253-263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36051638

RESUMO

Objective: To bridge the gap between evidence and clinical judgement, we defined scenarios appropriate for ureteral stent omission after uncomplicated ureteroscopy (URS) using the RAND/UCLA Appropriateness Method (RAM). We retrospectively assessed rates of appropriate stent omission, with the goal to implement these criteria in clinical practice. Methods: A panel of 15 urologists from the Michigan Urological Surgery Improvement Collaborative (MUSIC) met to define uncomplicated URS and the variables that influence stent omission decision-making. Over two rounds, they scored clinical scenarios for Appropriateness Criteria (AC) for stent omission based on a combination of variables. AC were defined by median scores: 1 to 3 (inappropriate), 4 to 6 (uncertain), and 7 to 9 (appropriate). Multivariable analysis determined the association of each variable with AC scores. Uncomplicated URS cases in the MUSIC registry were assigned AC scores and stenting rates assessed. Results: Seven variables affecting stent decision-making were identified. Of the 144 scenarios, 26 (18%) were appropriate, 88 (61%) inappropriate, and 30 (21%) uncertain for stent omission. Most scenarios appropriate for omission were pre-stented (81%). Scenarios with ureteral access sheath or stones >10mm were only appropriate if pre-stented. Stenting rates of 5,181 URS cases correlated with AC scores. Stents were placed in 61% of cases appropriate for omission (practice range, 25% to 98%). Conclusion: We defined objective variables and AC for stent omission following uncomplicated URS. AC scores correlated with stenting rates but there was substantial practice variation. Our findings demonstrate that the appropriate use of stent omission is underutilized.

9.
ACS Synth Biol ; 11(9): 3037-3048, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36044643

RESUMO

Programmable transcriptional factors based on the CRISPR architecture are becoming commonly used in plants for endogenous gene regulation. In plants, a potent CRISPR tool for gene induction is the so-called dCasEV2.1 activation system, which has shown remarkable genome-wide specificity combined with a strong activation capacity. To explore the ability of dCasEV2.1 to act as a transactivator for orthogonal synthetic promoters, a collection of DNA parts was created (GB_SynP) for combinatorial synthetic promoter building. The collection includes (i) minimal promoter parts with the TATA box and 5'UTR regions, (ii) proximal parts containing single or multiple copies of the target sequence for the gRNA, thus functioning as regulatory cis boxes, and (iii) sequence-randomized distal parts that ensure the adequate length of the resulting promoter. A total of 35 promoters were assembled using the GB_SynP collection, showing in all cases minimal background and predictable activation levels depending on the proximal parts used. GB_SynP was also employed in a combinatorial expression analysis of an autoluminescence pathway in Nicotiana benthamiana, showing the value of this tool in extracting important biological information such as the determination of the limiting steps in an enzymatic pathway.


Assuntos
Plantas , RNA Guia de Cinetoplastídeos , Regiões 5' não Traduzidas , Expressão Gênica , Plantas/genética , Regiões Promotoras Genéticas/genética , RNA Guia de Cinetoplastídeos/genética , Transativadores/genética
10.
Front Plant Sci ; 13: 936089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898224

RESUMO

Gene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the GREENFLESH (GF) locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene. The GF locus encodes a Mg-dechelatase responsible for initiating chlorophyll degradation; in gf mutants, ripe fruits accumulate both carotenoids and chlorophylls. Phenotypic evaluations were conducted on two transgene-free T2 'MoneyMaker' gf lines with different mutant alleles (a small insertion of 1 nucleotide and a larger deletion of 123 bp). Both lines, in addition to reduced chlorophyll degradation, showed a notable increase in carotenoid and tocopherol levels during fruit ripening. Infection of gf leaves and fruits with Botrytis cinerea resulted in a significant reduction of infected area and pathogen proliferation compared to the wild type (WT). Our data indicates that the CRISPR/Cas9-mediated mutation of the GF locus in tomato is efficient, specific and reproducible and that the resulting phenotype is robust and consistent with previously characterized greenflesh mutants obtained with different breeding techniques, while also shedding light on novel traits such as vitamin E overaccumulation and pathogen resistance. This makes GF an appealing target for breeding tomato cultivars with improved features for cultivation, as well as consumer appreciation and health.

11.
Gac. sanit. (Barc., Ed. impr.) ; 36(3): 270-273, may. - jun. 2022. graf
Artigo em Espanhol | IBECS | ID: ibc-209250

RESUMO

La pandemia de COVID-19ha tenido efectos devastadores sobre las personas mayores que viven en residencias. En España, aproximadamente el 3% de los casos y el 40% de los fallecimientos han sido en este grupo de población, en el que además han aumentado los síndromes geriátricos y los problemas psicosociales, y se han vulnerado derechos fundamentales, como consecuencia de las medidas para el control de la crisis. En este artículo se describen factores estructurales de las residencias y de su relación con los servicios sanitarios públicos que han tenido un papel importante en el impacto de la pandemia en estos entornos. Se presentan modelos alternativos a las residencias tradicionales y a la manera habitual de relación con el sistema público de salud, que unen a otras ventajas la de haber mostrado capacidades excelentes para proteger de la COVID-19 a las personas mayores que viven en estos centros. Entre estos modelos destacan diferentes tipos de viviendas de grupo, modalidades de coordinación sociosanitaria basadas en la gestión de casos y en la dotación de profesionales sanitarios desde el sistema de salud. Se proponen estas experiencias de éxito como elementos a considerar en el cambio de modelo sociosanitario (integrado y centrado en las personas) que ha comenzado a desarrollarse en algunas comunidades autónomas. (AU)


The effects of COVID-19 pandemic on older people living in care homes have been devastating. In Spain approximately 3% of the cases and 40% of the deaths have occurred in this group. In addition, due to measures taken to control the crisis, the incidence of geriatric syndromes has increased, and residents' fundamental rights have been violated. In this article we describe structural factors of care homes and their relationship with public health services that have influenced the impact of the pandemic. We suggest different types of group homes, and models of provision/coordination with public health services that have given excellent results protecting nursing homes residents from COVID-19, as alternative models to conventional residences and to the regular provision of health care services. We recommend that these successful experiences are taken into account in the transformation of the social-health model (to one integrated and focused on people) that has begun to be implemented in some Autonomous Communities of Spain. (AU)


Assuntos
Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Pandemias , Infecções por Coronavirus/epidemiologia , Geriatria , Serviços de Saúde para Idosos , Administração de Caso , Modelos de Assistência à Saúde/tendências , Espanha
12.
BMC Biotechnol ; 22(1): 12, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331211

RESUMO

BACKGROUND: CRISPR-based programmable transcriptional activators (PTAs) are used in plants for rewiring gene networks. Better tuning of their activity in a time and dose-dependent manner should allow precise control of gene expression. Here, we report the optimization of a Copper Inducible system called CI-switch for conditional gene activation in Nicotiana benthamiana. In the presence of copper, the copper-responsive factor CUP2 undergoes a conformational change and binds a DNA motif named copper-binding site (CBS). RESULTS: In this study, we tested several activation domains fused to CUP2 and found that the non-viral Gal4 domain results in strong activation of a reporter gene equipped with a minimal promoter, offering advantages over previous designs. To connect copper regulation with downstream programmable elements, several copper-dependent configurations of the strong dCasEV2.1 PTA were assayed, aiming at maximizing activation range, while minimizing undesired background expression. The best configuration involved a dual copper regulation of the two protein components of the PTA, namely dCas9:EDLL and MS2:VPR, and a constitutive RNA pol III-driven expression of the third component, a guide RNA with anchoring sites for the MS2 RNA-binding domain. With these optimizations, the CI/dCasEV2.1 system resulted in copper-dependent activation rates of 2,600-fold and 245-fold for the endogenous N. benthamiana DFR and PAL2 genes, respectively, with negligible expression in the absence of the trigger. CONCLUSIONS: The tight regulation of copper over CI/dCasEV2.1 makes this system ideal for the conditional production of plant-derived metabolites and recombinant proteins in the field.


Assuntos
Sistemas CRISPR-Cas , Nicotiana , Sistemas CRISPR-Cas/genética , Cobre , Expressão Gênica , Plantas/genética , Nicotiana/genética , Ativação Transcricional
13.
Microb Biotechnol ; 15(2): 630-647, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35084102

RESUMO

Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.


Assuntos
Penicillium chrysogenum , Penicillium , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Penicillium/genética , Penicillium/metabolismo , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , alfa-Fetoproteínas/metabolismo
14.
Plant Biotechnol J ; 20(1): 25-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416790

RESUMO

Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.


Assuntos
Controle Biológico de Vetores , Biologia Sintética , Agricultura , Animais , Produtos Agrícolas/genética , Controle de Insetos , Insetos
15.
Biodes Res ; 2021: 9891082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37849952

RESUMO

Plant-based bioproduction of insect sex pheromones has been proposed as an innovative strategy to increase the sustainability of pest control in agriculture. Here, we describe the engineering of transgenic plants producing (Z)-11-hexadecenol (Z11-16OH) and (Z)-11-hexadecenyl acetate (Z11-16OAc), two main volatile components in many Lepidoptera sex pheromone blends. We assembled multigene DNA constructs encoding the pheromone biosynthetic pathway and stably transformed them into Nicotiana benthamiana plants. The constructs contained the Amyelois transitella AtrΔ11 desaturase gene, the Helicoverpa armigera fatty acyl reductase HarFAR gene, and the Euonymus alatus diacylglycerol acetyltransferase EaDAct gene in different configurations. All the pheromone-producing plants showed dwarf phenotypes, the severity of which correlated with pheromone levels. All but one of the recovered lines produced high levels of Z11-16OH, but very low levels of Z11-16OAc, probably as a result of recurrent truncations at the level of the EaDAct gene. Only one plant line (SxPv1.2) was recovered that harboured an intact pheromone pathway and which produced moderate levels of Z11-16OAc (11.8 µg g-1 FW) and high levels of Z11-16OH (111.4 µg g-1). Z11-16OAc production was accompanied in SxPv1.2 by a partial recovery of the dwarf phenotype. SxPv1.2 was used to estimate the rates of volatile pheromone release, which resulted in 8.48 ng g-1 FW per day for Z11-16OH and 9.44 ng g-1 FW per day for Z11-16OAc. Our results suggest that pheromone release acts as a limiting factor in pheromone biodispenser strategies and establish a roadmap for biotechnological improvements.

16.
J Funct Biomater ; 9(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346333

RESUMO

The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process.

17.
J Phys Chem B ; 119(27): 8475-9, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26091047

RESUMO

The preference of large protein ion channels for cations or anions is mainly determined by the electrostatic interactions of mobile ions with charged residues of the protein. Here we discuss the widely spread paradigm that the charges determining the channel selectivity are only those that can be considered solvent-accessible because of their location near the permeation pathways of ions and water molecules. Theoretical predictions for the electric potential and average ion densities inside the pore are presented using several approaches of increasing resolution: from analytical and numerical solutions of electrostatic equations in a model channel up to all-atom molecular dynamics simulations and continuum electrostatic calculations performed in a particular biological channel, the bacterial porin OmpF. The results highlight the role of protein dieletric properties and the importance of the initial choice of the residue ionization states in the understanding of the molecular basis of large channel selectivity irrespective of the level of resolution of the computational approach used.


Assuntos
Porinas/química , Algoritmos , Sítios de Ligação , Íons/química , Modelos Químicos , Simulação de Dinâmica Molecular , Eletricidade Estática
18.
Oncologist ; 18(9): 1032-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966222

RESUMO

On September 5, 2011, abiraterone was approved in the European Union in combination with prednisone or prednisolone for the treatment of metastatic castration-resistant prostate cancer (CRPC) in adult men whose disease has progressed on or after a docetaxel-based chemotherapy regimen. On December 18, 2012, the therapeutic indication was extended to include the use of abiraterone in combination with prednisone or prednisolone for the treatment of metastatic CRPC in adult men who are asymptomatic or mildly symptomatic after failure of androgen deprivation therapy in whom chemotherapy is not yet clinically indicated. Abiraterone is a selective, irreversible inhibitor of cytochrome P450 17α, an enzyme that is key in the production of androgens. Inhibition of androgen biosynthesis deprives prostate cancer cells from important signals for growth, even in cases of resistance to castration. At the time of European Union approval and in a phase III trial in CRPC patients who had failed at least one docetaxel-based chemotherapy regimen, median overall survival for patients treated with abiraterone was 14.8 months versus 10.9 months for those receiving placebo (hazard ratio, 0.65; 95% confidence interval 0.54-0.77; p < .0001). In a subsequent phase III trial in a similar but chemotherapy-naïve patient population, median radiographic progression-free survival was 16.5 months for patients in the abiraterone treatment arm versus 8.3 months for patients in the placebo arm (hazard ratio, 0.53; 95% confidence interval, 0.45-0.62; p < .0001). Abiraterone was most commonly associated with adverse reactions resulting from increased or excessive mineralocorticoid activity. These were generally manageable with basic medical interventions. The most common side effects (affecting more than 10% of patients) were urinary tract infection, hypokalemia, hypertension, and peripheral edema.


Assuntos
Androstenóis/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Taxoides/uso terapêutico , Adulto , Androstenos , Androstenóis/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios Clínicos Fase III como Assunto , Progressão da Doença , Docetaxel , Aprovação de Drogas , União Europeia , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxoides/efeitos adversos , Resultado do Tratamento
19.
Biochem Res Int ; 2012: 245786, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23008773

RESUMO

Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH). We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl(2) aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc.) that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

20.
Biochim Biophys Acta ; 1818(11): 2777-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22789813

RESUMO

Porins are channel-forming proteins that are located in the outer membranes (OM) of Gram-negative bacteria and allow the influx of hydrophilic nutrients and the extrusion of waste products. The fine regulation of the ion transport through these wide channels could play an important role in the survival of the bacteria in acidic media. We investigate here the mechanism responsible for the pH sensitivity of the trimeric porin OmpF, of Escherichia coli. Planar lipid bilayer electrophysiology and site-directed mutagenesis were used to study the effect of pH on the ion conductive properties of the OmpF channel in its fully open, "nongated" conformation. At low pH we observe a large drop in the OmpF open channel conductance that is accompanied by a substantial increase of the current noise. These channel features are strongly dependent on the salt concentration and we propose that they are originated by competitive binding of cations and protons occurring in the narrow central constriction of the channel. This subtle mechanism reveals to be capital for the channel function because it not only drives the channel sensitivity to pH but is also indispensable for the particularly efficient permeation mechanism of the channel at physiological conditions (~neutral pH).


Assuntos
Porinas/antagonistas & inibidores , Prótons , Sais/química , Escherichia coli/química , Concentração de Íons de Hidrogênio , Porinas/química , Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...